Abstract

ABSTRACTMoistened (25% to 30% total basis) starches were processed on a pre‐shearing rheometer under controlled conditions of temperature, residence time, and shear rate. The specific mechanical energy (30 to 1000 J.g‐1) was measured and starch transformations assessed. The conversion of compacted native starch into a suspension of granule fragments in a melt was modeled by a simplified energy balance of the shearing zone. A theoretical fragmentation mechanism was proposed with a critical fracture energy of 125 J.m‐2. The computed mechanical energy and time necessary for achieving this transition varied in agreement with experimental results, for different operating conditions and starch botanical origins. Interparticle friction influenced granule fragmentation, whereas crystal melting was associated with viscous dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.