Abstract

A louver is a traditional environmental control device and passive architectural element based on an ecofriendly concept. Louvers are architectural elements that can be used to regulate natural lighting, thermal environment, and building energy use. To realize these integrated functionalities of louvers, they must be designed considering the climate and geographical characteristics of the target region. However, these aspects are typically not considered during building design in Korea, resulting in lovers being used as design elements with simple natural lighting control functions. Therefore, the objective of this study was to promote the integrated use of louvers by optimizing the louver angle according to the microclimate in Korea from the viewpoint of thermal energy use. We performed load and energy simulation planning and calculation and conducted optimization studies for the louver angle and range of motion for each region. The energy consumption in central and southern Korean regions was minimized when the angles of the fixed louvers were 45°–75° and 60°–90°, respectively. Kinetic louvers could enhance thermal energy management when installed at 30°–75° in spring, 135°–165° in summer, 75°–165° in autumn, and 45°–75° in winter. These findings can promote the realization of integrated functionalities of louvers from the perspective of indoor environment comfort based on the microclimates of the Korean regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.