Abstract
Winter provides many challenges for terrestrial arthropods, including low temperatures and decreased food availability. Most arthropods are dormant in the winter and resume activity when conditions are favorable, but a select few species remain active during winter. Winter activity is thought to provide a head start on spring growth and reproduction, but few studies have explicitly tested this idea or investigated tradeoffs associated with winter activity. Here, we detail biochemical changes in overwintering winter-active wolf spiders, Schizocosa stridulans, to test the hypothesis that winter activity promotes growth and energy balance. We also quantified levels of putative cryoprotectants throughout winter to test the prediction that winter activity is incompatible with biochemical adaptations for coping with extreme cold. Body mass of juveniles increased 3.5-fold across winter, providing empirical evidence that winter activity promotes growth and therefore advancement of spring reproduction. While spiders maintained protein content throughout most of the winter, lipid content decreased steadily, suggesting either a lack of available prey to maintain lipids, or more likely, an allometric shift in body composition as spiders grew larger. Carbohydrate content showed no clear seasonal trend but also tended to be higher at the beginning of the winter. Finally, we tested the hypothesis that winter activity is incompatible with cryoprotectant accumulation. However, we observed accumulation of glycerol, myo-inositol, and several other cryoprotectants, although levels were lower than those typically observed in overwintering arthropods. Together, our results indicate that winter-active wolf spiders grow during the winter, and while cryoprotectant accumulation was observed in the winter, the modest levels relative to other species could make them susceptible to extreme winter events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.