Abstract

Nowadays, virtual machine migration (VMM) is a trending research since it helps in balancing the load of the Cloud effectively. Several VMM-based strategies defined in the literature have considered various metrics, such as load, energy, and migration cost for balancing the load of the model. This paper introduces a novel VMM strategy by considering the load of the Cloud network. Two important aspects of the proposed scheme are the load prediction through the support vector regression (SVR) and the optimal VM placement through the proposed dragonfly-based crow (D-Crow) optimization algorithm. The proposed D-Crow optimization algorithm is developed by incorporating crow search algorithm (CSA) into dragonfly algorithm (DA). Also, the proposed VMM strategy defines a load balancing model based on the energy consumption, load, and the migration cost to achieve the energy-aware VMM. The simulation of the proposed VMM strategy is done based on the metrics such as load, energy consumption, and the migration cost. From the results, it can be shown that the proposed VMM strategy surpassed other comparative models by achieving the minimum values of 7.3719%, 10.0368%, and 11.0639% for the load, energy consumption, and migration cost, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.