Abstract

Planetary rovers are becoming indispensable for exploration activities and science missions. The rover used in such mission is often limited in its operation time owing to power and computational resources of the rover. In this paper, a trajectory planning method for a planetary rover is proposed that considers vehicle dynamics, and energy management of the rover. The vehicle dynamics is approximated from a dynamic simulation of the rover, which can estimate the power consumption in accordance with terrain traversability of the rover. The power generation of the solar array panel mounted on the rover is also taken into account. The simulation study confirmed the usefulness of the proposed method, especially in scenarios where slopes could be observed, and one result indicated that the energy margin could be improved by 4.1 kJ, 13.9 at maximum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.