Abstract
The majority of large-scale data intensive applications executed by data centers are based on MapReduce or its open-source implementation, Hadoop. Such applications are executed on large clusters requiring large amounts of energy, making the energy costs a considerable fraction of the data center’s overall costs. Therefore minimizing the energy consumption when executing each MapReduce job is a critical concern for data centers. In this paper, we propose a framework for improving the energy efficiency of MapReduce applications, while satisfying the service level agreement (SLA). We first model the problem of energy-aware scheduling of a single MapReduce job as an Integer Program. We then propose two heuristic algorithms, called energy-aware MapReduce scheduling algorithms (EMRSA-I and EMRSA-II), that find the assignments of map and reduce tasks to the machine slots in order to minimize the energy consumed when executing the application. We perform extensive experiments on a Hadoop cluster to determine the energy consumption and execution time for several workloads from the HiBench benchmark suite including TeraSort, PageRank, and K-means clustering, and then use this data in an extensive simulation study to analyze the performance of the proposed algorithms. The results show that EMRSA-I and EMRSA-II are able to find near optimal job schedules consuming approximately 40 percent less energy on average than the schedules obtained by a common practice scheduler that minimizes the makespan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.