Abstract

Many of today’s complex Cyber-Physical Systems (CPSs) are represented as a set of independent co-executing real-time control applications, where each such application is represented as a precedence-constrained task graph. The applications execute in infinite loops, periodically acquiring data from the environment through sensors at a particular frequency, processing the same, and then producing processed data via actuators. These CPSs often execute under stringent resource constraints (such as limited energy budgets) in distributed networked environments and may be heterogeneous to be able to satisfactorily meet stipulated performance specifications. This work presents a list-based energy-aware scheduler called DPMRS for a set of real-time control applications co-executing in a heterogeneous distributed environment. DPMRS introduces a novel approach for the integrated behavioural representation of a set of co-executing real-time DAG-structured applications. Each task in this integrated representation is then scheduled by determining its relative execution start time on a particular processor, which operates at an appropriately chosen frequency when the task runs on this processor. The overall objective of DPMRS is to minimize aggregate energy consumed in the execution of all tasks. The efficacy of the proposed scheduler has been exhibited through extensive simulation experiments using benchmark task graphs from different application domains. Additionally, a case study on automotive control systems has been included to show the applicability of the proposed work in real world settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.