Abstract

This paper is focused on the optimization of transmitted power in a cooperative decoded relaying scheme for nodes belonging to the single primary route towards. a destination. The proposed transmission protocol, referred to as Multihop Cooperative Transmission Chain (MCTC), is based on the linear combination of copies of the same message by multiple previous terminals along the route in order to maximize the multihop diversity. Power allocations among transmitting nodes in the route can be obtained according to the average (not instantaneous) node-to-node path attenuation using a recursive power assignment. The latter can be employed locally on each node with limited signalling exchange (for fixed or nomadic terminals) among nodes. In this paper the power assignments for the MCTC strategy employing conventional linear combining schemes at receivers (i.e., selection combining, maximal ratio combining and equal gain combining) have been derived analytically when the power optimization is constrained to guarantee the end-to-end outage probability. In particular, we show that the power assignment that minimize the maximum spread of received power (min-max strategy) can efficiently exploit the multihop diversity. In addition, for ad hoc networks where the energy of each node is an issue, the MCTC protocol with the min-max power assignment increases considerably the network lifetime when compared to non-cooperative multihop schemes

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.