Abstract

Yearly, the rates of Internet penetration are on the rise, surpassing 80% in developed nations. Despite this progress, over two billion individuals in rural and low-income regions face a complete absence of Internet access. This lack of connectivity hinders the implementation of vital services like remote healthcare, emergency assistance, distance learning, and personal communications. To bridge this gap and bring essential services to rural populations, this paper leverages Unmanned Aerial Vehicles (UAVs). The proposal introduces a UAV-based network architecture and an energy-efficient algorithm to deploy Internet of Things (IoT) applications. These applications are broken down into microservices, strategically distributed among a subset of UAVs. This approach addresses the limitations associated with running an entire IoT application on a single UAV, which could lead to suboptimal outcomes due to battery and computational constraints. Simulation results conducted in a realistic scenario underscore the effectiveness of the proposed solution. The evaluation includes assessing the percentage of IoT requests successfully served to users in the designated area and reducing the energy consumption required by UAVs during the handling of such requests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.