Abstract

Switching activity and instruction cycles are two of the most important factors in power dissipation when the supply voltage is fixed. This paper studies the scheduling and assignment problems that minimize the total energy caused by both instruction processing and switching activities for applications with loops on multi-core, multi-Functional-Unit (multi-FU) architectures. An algorithm, EMPLS (Energy Minimization with Probability using Loop Scheduling), is proposed to minimize the total energy (E) while satisfying timing constraint (L) with guaranteed probability (P). We perform scheduling and assignment simultaneously. Our approach shows better performance than the approaches that consider scheduling and assignment in separate phases. Compared with previous work, our algorithm exhibits significant improvement in total energy reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.