Abstract
Recently, unmanned aerial vehicles (UAV) have gained maximum interest in diverse applications ranging from military to civilian areas. The presence of numerous energy-constrained UAVs in an adhoc manner poses several design issues. At the same time, the limited battery, high mobility, and adaptive characteristics of the UAVs need effective design of clustering techniques for UAVs. In this manner, this paper presents a levy flight with a krill herd optimization algorithm (LF-KHOA) for energy-efficient clustering in UAVs. The proposed LF-KHOA technique integrates the concepts of LF to the KHOA to enhance efficiency and search space exploration. In addition, the LF-KHOA technique derives a fitness function involving three input parameters to elect cluster heads (CHs) and organize clusters. The energy consumed by the UAVs depends on the distance from UAVs to nearby nodes. Therefore, the fitness function aims to decrease communication distance, which mitigates energy utilization when transmitting the information. To ensure the better performance of the LF-KHOA technique, an extensive set of simulations takes place, and the results are inspected in terms of different measures. The experimental results highlighted the betterment of the LF-KHOA technique over the current state of art techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Wireless and Ad Hoc Communication
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.