Abstract
ABSTRACT With the development of cloud computing technology, energy-aware scheduling based on cloud computing is an essential means to achieve energy saving and carbon reduction in manufacturing systems. Due to various production disturbances in flexible production, the scheduling based on cloud computing has data security problems and poor real-time performance. How to use real-time information to improve the security and responsiveness of cloud scheduling is a research gap. This paper establishes a cloud-edge collaborative dynamic flexible job-shop energy-aware rescheduling decision-making model. According to the characteristics of dynamic production in a flexible manufacturing system, create a learning model for cloud scheduling with Deep Q Network (DQN) and send the training model to the edge for scheduling decisions. Based on real-time production interference data, edge scheduling model real-time update scheduling scheme. To improve the robustness of the cloud scheduling model based on DQN, Dynamic scheduling data at the edge will be uploaded to update the cloud model. In addition, the effectiveness and practicability of the model are verified in an extrusion workshop. The experimental results show that this method can improve the comprehensive objective evaluation of minimum energy consumption and completion time by 3.6% −49.3% compared with the traditional scheduling rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Integrated Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.