Abstract

Spacecraft cluster reconfiguration is one of the enabling technologies to ensure non-traditional attributes of distributed space systems. This work treats energy- and time-optimal reconfiguration problems for both circular and eccentric reference orbits. Furthermore, typical local and coupling constraints have been taken into account. Particularly, focus is given to two coupling constraints: final configuration constraints and collision avoidance constraints. For final configuration constraints, a parameterization method is applied to ensure that the reconfiguration problem can be solved as only one optimization problem, rather than a large number of optimization problems resulting from the traditional discretization method. A generalized formulation is proposed for non-convex collision avoidance constraints, which are then convexified via linearization and convex restriction technology. This method provides the affine approximation as a special case. After incorporating above constraints, the reconfiguration problem is formulated as an open-loop optimal control problem, which is solved via the Gauss pseudospectral method (GPM). By virtue of elegant features of GPM, those solutions can serve as a counterpart and stepping stone for a distributed implementation of reconfiguration algorithms. Various simulations demonstrate that minimum-energy/time cluster reconfiguration problems with collision avoidance for circular and eccentric reference orbits can be solved effectively and efficiently using GPM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call