Abstract

Ensuring the energy efficiency, thermal safety, and security-awareness in today’s large-scale distributed computing systems is one of the key research issues that leads to the improvement of the system scalability and requires researchers to harness an understanding of the interactions between the system external users and the internal service and resource providers. Modeling these interactions can be computationally challenging especially in the infrastructures with different local access and management policies such as computational grids and clouds. In this chapter, we approach the independent batch scheduling in Computational Grid (CG) as a three-objective minimization problem with Makespan, Flowtime and energy consumption in risky and security scenarios. Each physical resource in the system is equipped with Dynamic Voltage Scaling (DVS) module for optimizing the cumulative power energy utilized by the system. The effectiveness of six genetic-based single- and multi-population grid schedulers has been justified in comprehensive empirical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.