Abstract

This article addresses the problem of energy and code allocation to many users accessing, under spreading-based nonorthogonal multiple access, a wireless node set up with a successive interference cancellation architecture aided by redundancy-check error control. As an application, we consider the asynchronous access of a delay-tolerant satellite system, where users employ finite-length channel codes and are subject to a known power unbalance induced by the known distribution of the channel’s attenuation. The article develops, as a mathematically tractable approximation to massively populated systems, a unified framework to compute the best energy and code allocation rules that maximize the spectral efficiency of a network that handles asymptotically many users. Concretely, the presented approach circumvents the exponential complexity in the number of users when modeling the propagation of packet decoding failures through the receiver’s decoding scheme. It also enables a deterministic analysis of the more complex features affecting the receiver, making the related performance optimization problem amenable to systematic tools from differential and variational calculus. The derived expressions evidence the most favorable three-way unbalance between energy, rate, and reliability for receiver performance. Low-level system simulations are carried out for validation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.