Abstract
The objective of this research is to evaluate the heat and mass transfer in a water-based Darcy–Forchheimer hybrid nanofluid (HNF) flow across an expanding cylinder. The fluid flow has been studied under the influence of a magnetic field, viscous dissipation, heat source, thermal radiation, concentration stratification, and chemical reaction. Carbon nanotubes (CNTs) and iron ferrite (Fe3O4) nanoparticles (NPs) are added to the water, for the purpose of synthesizing the HNF. The fluid flow has been induced in the presence of gyrotactic microorganisms and the non-Fick’s model. Microorganisms are used to stabilize scattered nanoparticles through the hybrid nanofluid. The phenomena have been modeled in the form of a nonlinear system of partial differential equations (PDEs). The modeled equations are reduced to a dimensionless system of ODEs by using similarity substitution. The numerical solution of the derived sets of nonlinear differential equations is obtained by using the parametric continuation method. The impact of physical constraints on temperature, velocity, concentration, and microorganism profiles is presented through figures and tables. It has been observed that the heat and mass transport rates increase with the rising effect of the curvature parameter, while declining with the effect of the thermal stratification parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Frontiers in Energy Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.