Abstract
AbstractIn this article, micropolar nanofluid boundary layer flow over a slanted stretching surface with Soret and Dufour effect is studied. The inclined stretching surface in this study is considered permeable and linear. In this problem, the Buongiorno model is considered for thermal efficiencies of fluid flow in the existence of Brownian movement and thermophoresis properties. The nonlinear problem for Micropolar Nanofluid flow over the slanted channel is developed to think about the heat and mass exchange phenomenon by incorporating portent flow factors to strengthened boundary layers. In this study, nonlinear partial differential equations are converted to nonlinear ordinary differential equations by utilizing appropriate similarity transformations then elucidated the numerical outcomes by the Keller‐Box technique. An examination of the set‐up results is performed with accessible outcomes and perceived in a good settlement without involved impacts. Numerical and graphical outcomes are additionally displayed in tables and charts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.