Abstract

Cloud computing enables the execution of various applications submitted by the users in the virtualized Cloud environment. However, the Cloud infrastructure consumes a significant amount of electrical energy to provide services to its users that have a detrimental effect on the environment. Many of these applications (tasks), like those belonging to the healthcare system, scientific research, the Internet of Things (IoT), and others, are deadline-sensitive. Hence efficient scheduling of tasks is essential to prevent deadline violation, decrease makespan, and at the same time reduce energy consumption. To address this issue, we have considered the bi-objective optimization problem of minimization of energy and makespan and have proposed two scheduling approaches for independent, deadline-sensitive tasks in a heterogeneous Cloud environment. Our first approach is a greedy heuristic based on the Linear Weighted Sum technique. The second one is based on Ant Colony Optimization and uses a combination of heuristic search and positive feedback of information to improve the solution. Both approaches use a three-tier model where tasks are scheduled by taking into account the properties of three entities- tasks, VMs, and hosts. Moreover, we have proposed a suitable strategy for scaling of Cloud resources to improve energy-efficiency and task schedulability. Extensive simulations using Google Cloud trace-logs and comparison with some state-of-art approaches validate the effectiveness of our proposed scheduling techniques in achieving a proper trade-off between the energy consumption of the virtualized Cloud infrastructure and the average makespan of the tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.