Abstract

Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System. The experimental design used in this study facilitates the flow of varying concentrations of Zn-water nanofluid in serpentine copper tubing installed at the rear of the PV panel thereby preventing the PV surface temperature from increasing beyond the threshold value at which a decrease in electrical efficiency starts to occur. This fusion of solar thermal with PV devices leads to better electrical and thermal efficiency values resulting in decreased cell degradation over time and maximization of the lifespan of the PV module and the energy output from the PV system. Due to the superior thermal heat properties of nanofluids, their usage in such systems has become increasingly widespread. Life cycle metrics which include Energy Payback period, Energy Production Factor and life cycle conversion efficiency were evaluated for the PVT system by exhaustively chalking fundamental parameters such as embodied energy of the PVT setup and the total energy output from the PVT system. This research aims to be a major milestone in the evolutionary journey of Photovoltaic Thermal modules by guiding the engineers working on the theory, design and implementation of PVT systems towards its economic feasibility, environmental impact and energy sustainability.

Highlights

  • A significant effort is underway to realize the true potential of solar PV technology but various challenges that pose a hindrance to solar energy expansion need to be identified and effective research is needed to eliminate them to realize the prospects offered by Solar Energy expansion in nation-building goals

  • EE, 2022, vol.119, no.2 surface temperature upon receiving the solar radiations increases beyond a certain threshold, the electrical efficiency starts to decrease Components used to fabricate the PV panels such as the semiconductor Silicon and other metals to support the frame of the Photovoltaic Thermal (PVT) system get warmed up beyond the threshold value at which maximum efficiency is expected to be achieved resulting in decrement of the efficiency of the photovoltaic cells usually at an alarming rate of about 0.4% to 0.6% [3]

  • Using nanofluids as heat transfer fluids due to their superior values of thermal conductivity and specific heat capacity can result in enhanced performance parameters of the PVT modules

Read more

Summary

Introduction

India has massive demands of energy being one of the fastest growing economies of the world and home to a population of more than 1.3 billion people. EE, 2022, vol.119, no.2 surface temperature upon receiving the solar radiations increases beyond a certain threshold, the electrical efficiency starts to decrease Components used to fabricate the PV panels such as the semiconductor Silicon and other metals to support the frame of the PVT system get warmed up beyond the threshold value at which maximum efficiency is expected to be achieved resulting in decrement of the efficiency of the photovoltaic cells usually at an alarming rate of about 0.4% to 0.6% [3] This necessitates the use of a cooling mechanism of PV panels to prevent such a situation. The PVT setup was evaluated from a technoeconomic and environmental perspective and a through life cycle assessment of the PV/T module was done in this study

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call