Agriculture, Ecosystems & Environment | VOL. 199
Read

Energy and greenhouse gas analysis of northeast U.S. dairy cropping systems

Publication Date Jan 1, 2015

Abstract

Abstract Dairy farms in the northeast typically produce their own forage, import grain crops, and rely heavily on other inputs. Feed production inputs include fertilizers, herbicides, pesticides, and fuel that require fossil energy and produce greenhouse gas (GHG) emissions during their manufacture and transport. This study uses the Farm Energy Analysis Tool (FEAT) to compare and contrast the fossil energy consumption, energy efficiency, and GHG emissions for three different Pennsylvania dairy cropping systems that vary in their reliance on imported grains and fuel, and thus, land area to produce the same quantity of milk. One novel cropping system, implemented at Penn State University, includes a diverse rotation designed to produce forage, grain, and fuel on-farm (NSVO). The ‘NSVO’ cropping system employs a number of best management practices, including manure injection, cover crops, and integrated pest management. The two modeled-systems require fewer hectares than ‘NSVO’ because they do not produce fuel on-farm but produce forage only (FOR), or forage and grain (FORGr), while producing the same amount of milk. Relative to the ‘FOR’ system, even while requiring larger land areas locally, we found that the ‘NSVO’ and ‘FORGr’ systems lowered total fossil energy inputs per Mg of milk produced by 18% and 15% respectively, largely by importing 77% and 71% less feed crops that would have been grown elsewhere. GHG emissions were similar among farms, on the order of 229 kg CO2e Mg-milk−1. On-farm fuel production in the ‘NSVO’ sys...

Concepts

Greenhouse Gas Emissions Number Of Best Management Practices Import Grain Fossil Energy Cropping System Mg Of Milk Fossil Energy Inputs Greenhouse Gas Penn State University Produce Greenhouse Gas

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.