Abstract

Tractors equipped with hydro-mechanical transmissions (HMTs) typically deliver excellent fuel-saving performance but are expensive. To improve the fuel economy of cheaper tractors, the authors of this study have designed an HMT for a tractor that uses a simple, single planetary gear to merge the power and analyze its consumption of energy and fuel. First, we introduce the principle of transmission of the HMT and formulate a model to calculate its speed, torque, and efficiency. Second, we analyze the parasitic power of the HMT and simulate its characteristics of efficiency. Finally, we compare the efficiency of transmission and fuel consumption of HMTs with a single planetary gear and Simpson planetary gears. The results showed that parasitic power was obtained when the displacement of the variable pump was negative and the maximum ratio of hydrostatic power in each range was 45–46%. The highest efficiency of the proposed HMT in ranges RL (low range) and RH (high range) were 87% and 89%, respectively. It has a simpler structure than the HMT with Simpson planetary gears and consumes lower amounts of energy and fuel. These attributes make it suitable for use as a transmission system for large- and medium-power tractors with a continuously variable transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call