Abstract

This study presents the energy and exergy analyses of three low-temperature solar thermal energy storage (STES) systems. These STESs were of the same design but, contained different heat storage materials (benzoic acid, stearic acid and palm olein) evaluated during heat charging and discharging periods. The energy and exergy inputs and outputs were analysed and factored to estimate the efficiencies during heat charging, while the energy and exergy drop during heat discharge were also estimated. The energy and exergy outputs were optimised using a set constraint employed on Design-Expert 11 software. The energy and exergy outputs ranged between 25.89-95.96 W and 13.15-52.37 W, respectively, depending on the type of heat storage materials used. Under optimised conditions, the energy and exergy outputs increased to 117.1-202.7 W and 81.2-107.5 W, respectively. The STESs were found to have a positive and significant effect on the energy and exergy efficiencies and the energy and exergy drop. The quantity of water heated only affected the energy and exergy drop. This paper reveals that the energy and exergy parameters of a solar thermal system can be optimised by the integration of a STES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.