Abstract

Abstract Acetone–butanol–ethanol–water mixture is obtained by fermentation of biomass namely, corncob, wheat straw, sugarbeets, sugarcane, etc. For using the individual components, one alternative is to separate the mixture by distillation, which is costly and energy intensive operation. This paper proposes its other use in available conditions to produce hydrogen fuel by oxidative steam reforming process. For the proposed process, thermodynamic equilibrium modeling has been performed by using non-stoichiometric approach of Gibbs free energy minimization. The compositions of acetone, butanol and ethanol in mixture are 0.33:0.52:0.15 on molar basis. The influence of pressure (1–10 atm), temperature (573–1473 K), steam to ABE mixture molar feed ratio (F ABE = 5.5–8.5), and oxygen to ABE mixture molar feed ratio (F OABE = 0.25–1) have been tested by simulations on the yield of products (at equilibrium) namely, H2, CH4, CO2, CO, and carbon as solid. The optimum conditions for maximum production of desired H2, minimization of undesired CH4, and elimination of carbon (solid) formation are T = 973 K, P = 1 atm, F ABE = 8.5, and F OABE = 0.25. Under same operating conditions, the maximum generation of H2 is 7.51 on molar basis with negligible carbon formation. The total energy requirement for the process (295.73 kJ/mol), the energy required/mol of hydrogen (39.37 kJ), and thermal efficiency (68.09%) of the reformer have been obtained at same operating conditions. The exergy analysis has also been investigated to measure the work potential of the energy implied in the reforming process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call