Applied Thermal Engineering | VOL. 140

Energy and exergy investigation of a combined cooling, heating, power generation, and seawater desalination system

Publication Date Jul 1, 2018


Abstract In the present paper, a combined cooling, heating and power and a multi effect desalination with thermal vapor compression system was used to simultaneously produce electricity, fresh water, refrigeration, and hot water for domestic use. In order to link the Brayton cycle to the water desalination and ejector refrigeration systems, a dual-pressure heat recovery steam generator unit was utilized. In this research, the considered system was analyzed in terms of exergy and energy under various operational conditions and also pollution generated by combustion process is determined. To consider the effects of design parameters on the efficiency of the system, a parametric analysis was further conducted to examine influences of such factors as compressor compression ratio, inlet temperature of turbine, vapor pressure entering into the desalination unit, and the number of desalination units on exergy and energy efficiencies of the cycle. The results indicated the capability of the proposed system for providing fresh water, power, cooling and heating loads of 85.57 kg/s, 30 MW, 2.03 MW and 1.11 MW, respectively. Finally, total exergy destruction and exergy and energy efficiencies of the cycle were obtained to be 55.82 MW, 36.03%, and 39.22%, respectively.


Dual-pressure Heat Recovery Steam Generator Heat Recovery Steam Generator Unit Hot Water For Domestic Use Thermal Vapor Compression System Multi Effect Desalination Water For Domestic Use Ejector Refrigeration Systems Inlet Temperature Of Turbine Seawater Desalination System Terms Of Exergy

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.