Abstract

In this study, the thermodynamic performance of a combined gas turbine system equipped with a tubular solid oxide fuel cell and hydrogen fuel was investigated. All components of the system were separately modeled using thermodynamic relations. The simulation results showed that the efficiency of the combined system decreased with an increase in the turbine inlet temperature, whereas the power of the system increased. In addition, increasing the temperature entering the turbine and increasing the pressure ratio increased the production entropy and, as a result, increased the irreversibility of the system. The results of the research at the design point showed that 65% of the irreversibility of the system was caused by the combustion chamber and fuel cell (35% of the amount of entropy produced, the contribution of the combustion chamber, and 30% of the contribution of the solid oxide fuel cell) and 19% was due to the contribution of the heat exchanger. In addition, the combined system has an efficiency of 9.81%, while the system without a fuel cell has an efficiency of 33.4%, which shows the extraordinary performance of the combined system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.