Abstract
Shipping contributes today to 2.1% of global anthropogenic greenhouse gas emissions and its share is expected to grow together with global trade in the coming years. At the same time, bunker prices are increasing and companies start to feel the pressure of growing fuel bills in their balance sheet. In order to address both challenges, it is important to improve the understanding of the energy consumption trends on ships through a detailed analysis of their energy systems. In this paper, energy and exergy analysis are applied to the energy system of a chemical tanker, for which both measurements and technic knowledge of ship systems were available. The application of energy analysis to the case-study vessel allowed for the comparison of different energy flows and therefore identifying system components and interactions critical for ship energy consumption. Exergy analysis allowed instead identifying main inefficiencies and evaluating waste flows. Results showed that propulsion is the main contributor to ship energy consumption (70%), but that also auxiliary heat (16.5%) and power (13.5%) needs are relevant sources of energy consumption. The potential for recovering waste heat is relevant, especially from the exhaust gases, as their exergetic value represents 18% of the engine power output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.