Abstract
Energy and exergy analysis for batch fluidized bed dryer based on the Eulerian two-fluid model (TFM) is performed to optimize the input and output and keep the quality of products in good condition. The two-fluid model is used based on a continuum assumption of each phase. Two sets of conservation equations are applied for gas–solid phases and are considered as interpenetrating continuum. Further this study considers the two-dimensional, axis-symmetrical cylindrical energy and exergy equations for both phases and numerical simulation is preformed. The governing equations are discretized using a finite volume method with local grid refinement near the wall and inlet. The effects of parameters such as: the inlet gas velocity, inlet gas temperature and the particle size diameter on the energy, exergy efficiencies and the availability of gas are sought. Two-fluid model prediction indicates good agreement between the available experimental results and reported non-dimensional correlations and other model predictions. It is illustrated that at the beginning of the drying process, the energy efficiency is higher than the exergy efficiency for a very short time. However two efficiencies come closer to each other at the final stage of the drying. Increasing particle size will decrease both efficiencies and the gas availability at the starting process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.