Abstract

Hydrogen is considered to be a suitable supplementary fuel for Spark Ignition (SI) engines. The energy and exergy analysis of engines is important to provide theoretical fundaments for the improvement of energy and exergy efficiency. However, few studies on the energy and exergy balance of the engine working under Hydrogen Direct Injection (HDI) plus Gasoline Port Injection (GPI) mode under lean-burn conditions are reported. In this paper, the effects of two different modes on the energy and exergy balance of a SI engine working under lean-burn conditions are presented. Two different modes (GPI + GDI and GPI + HDI), five gasoline and hydrogen direct injection fractions (0, 5%, 10%, 15%, 20%), and five excess air ratios (1, 1.1, 1.2, 1.3, 1.4) are studied. The results show that the cooling water takes the 39.40% of the fuel energy on average under GPI + GDI mode under lean-burn conditions, and the value is 40.70% for GPI + HDI mode. The exergy destruction occupies the 56.12% of the fuel exergy on average under GPI + GDI mode under lean-burn conditions, and the value is 54.89% for GPI + HDI mode. The brake thermal efficiency and exergy efficiency of the engine can be improved by 0.29% and 0.31% at the excess air ratio of 1.1 under GPI + GDI mode on average, and the average values are 0.56% and 0.71% for GPI + HDI mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.