Abstract

The solar photovoltaic (PV) system generates both electrical and thermal energy from solar radiation. In this paper, an attempt has been made for evaluating thermal, electrical and exergy output of solar PV panel installed at Energy Centre, NIT Bhopal. Using the first law of thermodynamics, energy analysis was performed and exergy analysis was carried out to determine exergy losses during the PV conversion process by applying the second law of thermodynamics. The operating and electrical parameters of a PV array include PV module temperature, overall heat loss coefficient, open-circuit voltage, short-circuit current, fill factor, etc. were experimentally determined for a typical hazy day of March (10 March 2012) at Bhopal. The experimental data are used for the calculation of the energy and exergy efficiencies of the PV systems. Energy efficiency is seen to vary between 6% and 9% during the day. In contrast, exergy efficiency is lower for electricity generation using the considered PV module, ranging from 8% to 10%. It is observed that the PV module temperature has a great effect on the exergy efficiency, and the exergy efficiency can be improved if the heat can be removed from the PV module surface. It was concluded that the exergy losses increased with increasing module temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call