Abstract

In this study, an advanced combined cycle-based power generation system, integrating biomass gasification with a solid oxide fuel cell (SOFC) module and an organic vapor turbine, has been modeled and analyzed. The thermodynamic model has been developed by integrating the component models through customized codes written using engineering equation solver software. Both energetic and exergetic analyses of the proposed system have been conducted under varying design and operating parameters to assess their effects on the performance of the proposed system. The study reveals that the integrated system yields a maximum overall energetic efficiency of 41.13%, occurring at a pressure ratio of 2.5 for the compressor. The gasifier is the component responsible for maximum exergy destruction (accounting for 32.36% of fuel exergy input), followed by the heat recovery vapor generator and the SOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call