Abstract

A novel sulfur–iodine (SI or IS) cycle integrated with HI–I2–H2O electrolysis for hydrogen production was developed and thermodynamically analyzed in this work. HI–I2–H2O electrolysis was used to replace the conventional concentration, distillation, and decomposition processes of HI, so as to simplify the flowsheet of SI cycle. And then the new cycle was divided into Bunsen reaction, H2SO4 decomposition and HI–I2–H2O electrolysis sections. Through incorporating the user-defined module of HI–I2–H2O electrolysis with Aspen Plus, the cycle was simulated and 0.448 mol/h (10 L/h) of H2 was produced. The overall energy and exergy efficiencies of the novel SI system were estimated to be 15.3–31.0% and 32.8%, respectively. Most exergy destruction occurred in the H2SO4 decomposer and condenser for H2SO4 decomposition and Bunsen reaction sections, which accounted for 93.0% and 63.4%, respectively. A high exergy efficiency of 92.4% for HI–I2–H2O electrolysis section with less exergy destruction was determined, mostly due to the transformation of the overall electricity in electrolytic cell to exergy. Appropriate internal heat exchange and waste heat recovery will favor improving the energy and exergy efficiencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call