Abstract

Combined cooling, heating, and power systems have been studied extensively because of their great potentials. Accordingly, in the present study, an innovative trigeneration system including a gas turbine cycle, a gasification unit, a heating unit, alongside a single effect absorption refrigeration cycle is proposed. The system operates on natural gas and municipal solid waste (MSW) for cooling, heating, and power generation. The designed system was simulated using Engineering Equation Solver (EES) software through two scenarios; constant power output and constant biomass feed rate, considering seasonal and annual periods. In the first scenario, considering the constant power capacity, the basic design state was considered with the biomass mixing ratio of 50%, and the results of the seasonal study showed that the system capacity is 30 MW, 41.9 MW, and 39.24 MW in terms of electricity, heating, and cooling, respectively. The exergy analysis revealed that the combustion chamber, the evaporator of Heat Recovery Steam Generator (HRSG), and the gasifier in both hot and cold seasons have the highest exergy destruction rate, while the economizers and the evaporators of both HRSGs have the lowest exergy efficiency. The constant mass flow rate of MSW was assumed to be 1.5 kg/s and accordingly, the feed rate of natural gas was also 1.5 kg/s for the mixing ratio of 50% in basic design state of the second scenario, and the results indicated that the annual average capacity of the system for electricity, heating, and cooling generation is 27.43 MW, 40 MW, and 34.15 MW, respectively. Furthermore, the system was capable of providing the domestic hot water supply of end-user with an average capacity of 7.5 MW during a year. The annual Energy Utilization Factor (EUF) and the annual exergy efficiency of the overall system were shown to be 71.25% and 30.79%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.