Abstract

This study reports the thermodynamic analysis of a high-temperature recuperative organic Rankine cycle comprising a water heating system that can provide a net power of 585.7 kW and hot water for domestic use at 35 °C. The performance was analysed using seasonal ambient temperature and water temperature data from Seoul, South Korea. The working fluid was separated into two different mass fractions after emerging from the turbine 1 outlet; one fraction provided heat to recuperate the organic Rankine cycle, and the other fraction was transferred to the water heating system for heating water. Mass fractions were balanced based on the projected seasonal need for hot water. Four working fluids with high critical temperatures and five working fluids with low critical temperatures were examined for top and bottom cycles, respectively. Chlorobenzene was selected for the top cycle and R601 was selected for the bottom cycle. The system achievement in individual months was analysed using thermal efficiency and exergy efficiency. Moreover, the performances of the hottest (low hot water demand) and coldest (high hot water demand) months were analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call