Abstract

A nanofluid is used as working fluid in a solar parabolic trough collector (PTC) for solar cooling and hydrogen production. The combined system is composed of five sub-systems including PTC, Rankine cycle, thermal energy storage, triple effect absorption cooling system (TEACS), and proton exchange membrane (PEM) electrolyzer. The results of the thermodynamic model for the hybrid PTC/Rankine cycle, TEACS and PEM electrolyzer subsystem are validated. Furthermore, the effects of ambient temperature, solar irradiation and nanofluid volume fraction on the hydrogen production, COP and exergy efficiency of TEACS, and the overall energy and exergy efficiency of the hybrid system are examined. We found that the rate of hydrogen production increases at higher solar radiation intensity because the Rankine cycle delivers more power to the PEM electrolyzer. Exergy analysis reveals that the efficiency of the hybrid system increases approximately by 9% by increase of ambient temperature from 5 to 40 °C. The power generation by Rankine cycle and hydrogen production by electrolyzer increases using higher volume fraction of nanoparticles. The overall energy and exergy efficiency of the hybrid system with the nanoparticles volume fraction of 0 are 1.55 and 1.4 times more than the nanoparticles volume fraction of 0.03 at solar intensity of 600 W m−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.