Abstract
ABSTRACT Helicoidal water-air geothermal heat exchanger (HWAGHE) uses the water well as a heat source/sink for air refreshing purposes in space. It has been exploited as a passive technique to minimize the energy uses in buildings. This work goals to estimate the energy and exergy characteristics of HWAGHE for arid zone weather condition of Algeria. The helicoidally geometry enhancing the heat exchange with the soil is chosen to decrease the operating cost and the needed area. The studied HWAGHE was constructed from a flexible PVC pipe with 30 m length and 0.6 m diameter. It was immersed into a drilled borehole with 1 m diameter and 5 m depth. The heat exchange rate with the ground and exergy and energy efficiencies of HWAGHE is evaluated. Experimental findings revealed that the inlet ambient temperature has a considerable impact on the HWAGHE performances mainly when the change in temperature between the ambient and the water well increments. Maximal exergy and energetic efficiencies of the HWAGHE, reaching 89% and 92%, respectively, are obtained at 0.035 kg s−1 mass flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.