Abstract

A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor.Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles.The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which the Carnot factor is exceeded are determined, where carbon dioxide, nitrogen, helium and hydrogen are considered as real working fluids, followed by an entropic analysis in order to verify 2nd law fulfilment.The results of the analysis show that within a range of relatively low operating temperatures, high thermal efficiency is achieved, reaching 44.9% for helium when the Carnot factor is 33.3% under a ratio of temperatures of 450/300K. With respect to entropy analysis, it is verified that the results of the latter demonstrate compliance with the second principle, while violating Carnot constraints, since the Carnot factor is constrained only by the Carnot, Stirling and Ericsson cycles and its associated Carnot engine characteristics. However, the most relevant findings through the performed analysis concern the detection of some inconsistencies regarding the conventional 2nd law efficiency definition and the exergy transfer definition from thermal power sources to thermal cycles.In summary, a TC undergoing isochoric heat absorption, adiabatic expansion and isobaric heat rejection under closed transformations can yield improved performance over traditional thermal cycles, even exceeding the Carnot factor under relatively low top temperatures, for which Carnot efficiency is lower. Furthermore, the concept of 2nd law efficiency, defined as the ratio of the thermal to the Carnot efficiency, has been reconsidered in agreement with the results achieved. That is, the definition of 2nd law efficiency lacks both theoretical and practical sense. In the same way, as a result of discarding the Carnot factor as limiting the thermal efficiency, the definition of the exergy transfer to a thermal cycle (the maximum available energy) must be defined as the product of the transferred heat from a heat source and the thermal efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call