Abstract

This work focuses on the energy and economic evaluation of a power generation system composed of a downdraft gasifier and gas microturbine. The gasification process was studied using wood pellets as fuel, while the influence of two gasification agents (air and oxygen-enriched air) on parameters, such as low heating value (LHV), composition, and yield of syngas, were analyzed. The syngas produced from oxygen-enriched air gasification in a downdraft gasifier had an LHV higher than 8 MJ/Nm3, being suitable to be supplied in the gas microturbine. Subsequently, syngas use in the gas microturbine was evaluated, and the results demonstrated that microturbine efficiency dropped from 33.00% to 21.35%, while its power decreased from 200 kW to 81.35 kW. The power generation system was modeled using Aspen Plus® v 11.0 software and validated using results obtained from published experimental studies. Accordingly, the integrated generation system presented an overall efficiency of 11.82% for oxygen-enriched air gasification cases. On the other hand, an economic assessment through risk analysis using Monte Carlo simulations was performed using Crystal Ball® v11.1.2.4.850 software. The economic results indicated that the implementation of a generation system was economically unfeasible, however, if the electricity rate price was increased by 63%, the proposed configuration could be feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.