Resources, Conservation and Recycling | VOL. 87

Energy and carbon dioxide intensity of Thailand's steel industry and greenhouse gas emission projection toward the year 2050

Publication Date Jun 1, 2014


Abstract The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.

Powered ByUnsilo

Baseline Scenario
Semi-finished Steel
CO2 Intensity
Steel Industry
Plausible Scenarios
Amount Of CO2 Emission
Intergovernmental Panel On Climate Change
Integrated Steel Plant
Greenhouse Gas Emission
CO2 Emission

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between May 09, 2022 to May 15, 2022

R DiscoveryMay 16, 2022
R DiscoveryArticles Included:  2

Introduction: Climate change is a pervasive threat to global biodiversity and is expected to have profound effects on the resilience and abundance of ...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard