Abstract

It is shown that the axial and polar perturbations of the spherically symmetric black hole can be described in a gauge-invariant way. The reduced phase space describing gravitational waves outside of the horizon is described by the gauge-invariant quantities. Both degrees of freedom fulfill generalized scalar wave equation. For the axial degree of freedom the radial part of the equation corresponds to the Regge-Wheeler result (Phys. Rev. 108, 1063-1069 (1957)) and for the polar one we get Zerilli result (Phys. Rev. D2, 2141-2160 (1970)), see also Chandrasekhar (The Mathematical Theory of Black Holes,(Clarendon Press Oxford, 1983)), Moncrief (Annals of Physics 88, 323-342 (1974)) for both. An important ingredient of the analysis is the concept of quasilocality which does duty for the separation of the angular variables in the usual approach. Moreover, there is no need to represent perturbations by normal modes (with time dependence $\exp(-ikt)$), we have fields in spacetime and the Cauchy problem for them is well defined outside of the horizon. The reduced symplectic structure explains the origin of the axial and polar invariants. It allows to introduce an energy and angular momentum for the gravitational waves which is invariant with respect to the gauge transformations. Both generators represent quadratic approximation of the ADM nonlinear formulae in terms of the perturbations of the Schwarzschild metric. We also discuss the boundary-initial value problem for the linearized Einstein equations on a Schwarzschild background outside of the horizon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call