Abstract

Chemical looping combustion is a promising technology for power production with integrated CO2 capture. High overall efficiencies can be reached, if the CLC reactors are operated at elevated pressures and high temperature, which can be accommodated in packed bed reactors. More possible oxygen carriers can be selected if the desired temperature rise for power production is achieved in a two stage chemical looping combustion (TS-CLC) process. In this work, the TS-CLC configuration using copper and manganese based oxygen carriers has been integrated in a complete power plant based on coal gasification (IG-CLC). An extensive energy analysis based on the combined use of a packed bed reactor modeling tool and a complete process simulation has been undertaken. An economic estimation of the reactors capital cost has also been carried out.From the material and energy balances the IG-CLC with one stage nickel-based CLC process results in a net electric efficiency of 41.1% on low heating value basis. In case of TS-CLC, efficiencies of 40.3%–40.8% have been obtained. This demonstrated that IGCC (integrated gasification combined cycles) adopting a TS-CLC process can also achieve high efficiency compared to conventional CO2 capture technologies. Although a larger reactor volume is required for TS-CLC, the total estimated investment costs are a factor two lower, because the oxygen carriers are much cheaper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.