Abstract
Enhancing the energy-effectiveness of microwave-assisted fragmentation is one of the overlooked areas in the published literature. A novel calorimetric technique is proposed to quantify the effect of inductive heating within a microwave cavity on subsequent rock/ore fragmentation. Two new parameters are introduced to identify, differentiate, and quantifiably evaluate the effects of microwave-induced energy and thermally induced fracturing on mechanical strength degradation. Additionally, the influences of sample geometry and position and orientation with respect to the microwave waveguide are experimentally investigated to determine optimum conditions for microwave treatment. Comparisons with published literature show that establishing optimum electromagnetic heating conditions significantly improves microwave-induced weakening. Microwave-assisted degradation has significant potential application to in-situ mining, tunnelling, rock breakage, and comminution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.