Abstract

<abstract><p>In this work, the ADI-FDTD method with fourth-order accuracy in time for the 2-D Maxwell's equations without sources and charges is proposed. We mainly focus on energy analysis of the proposed ADI-FDTD method. By using the energy method, we derive the numerical energy identity of the ADI-FDTD method and show that the ADI-FDTD method is approximately energy-preserving. In comparison with the energy in theory, the numerical one has two perturbation terms and can be used in computation in order to keep it approximately energy-preserving. Numerical experiments are given to show the performance of the proposed ADI-FDTD method which confirm the theoretical results.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.