Abstract
X-ray crystallographic structures of human DNA polymerase beta with nonhydrolyzable analogs containing all atoms in the active site required for catalysis provide a secure starting point for a theoretical analysis (quantum mechanics/molecular mechanics) of the mechanism of chemistry without biasing of modeling assumptions as required in previous studies. These structures provide the basis for a detailed quantum mechanics/molecular mechanics study of the path for the complete transfer of a monophosphate nucleoside donor to the sugar acceptor in the active site. The reaction is largely associative with the main energetic step preceded by proton transfer from the terminal primer deoxyribose O3' to Asp-256. The key residues that provide electrostatic stabilization of the transition state are identified and compared with those identified by mutational studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.