Abstract
Energy absorption for AZ31 magnesium Alloy was investigated with Split Hopkinson Pressure Bar using single stress wave so as to avoid multiple stress wave loading. The stress wave amplitude, which was in elastic stress range and propagated along the AZ31 magnesium bar, was reduced with increasing propagating distance, and with increasing stress wave amplitude, the stress wave amplitude reduction along the magnesium bar was increased losing more energy as compared with that of the stress wave with lower amplitude. The drastically decreased stress wave amplitude could be explained based on dislocations movements, which was similar to the established theory of damping for the explanation of the energy loss during cyclic loading. However, it was not the case for LY12 aluminum alloy: the stress wave amplitude changed slightly without drastic energy loss regardless of the variation of stress wave amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.