Abstract
This paper develops a mathematical model to depict the energy absorption properties of multi-layered corrugated paperboard (MLCP) in various ambient humidities. It is a piecewise function to model the energy absorptions corresponding to three deformation stages of MLCP (elastic stage, plateau stage and densification stage) separately. Simple formulas are derived for each stage which relating the energy absorption capacity of MLCP to the thickness-to-flute pitch ratio ( t c / λ ) of corrugated-core cell, the mechanical properties of corrugated medium tested under a controlled atmosphere [23 °C and 50% relative humidity (RH)], and the RH. The theoretical energy absorption curves are then compared with experimental ones and good agreements are achieved for MLCP with wide range ratios of t c / λ in various ambient humidities. Results of this research can be applied in the optimum design and material selection of cushioning packaging with multi-layered corrugated paperboard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.