Abstract

Absorbed power characteristics of seated human subjects under fore-aft (x-axis) and lateral (y-axis) vibration are investigated through measurements of dynamic interactions at the two driving-points formed by the body and the seat pan, and upper body and the backrest. The experiments involved: (i) three back support conditions (no back support, and back supported against a vertical and an inclined backrest); (ii) three seat pan heights (425, 390 and 350 mm); and three magnitudes (0.25, 0.5 and 1.0 m/s2 rms acceleration) of band limited random excitations in 0.5-10 Hz frequency range, applied independently along the x- and y- axes. The force responses, measured at the seat pan and the backrest are applied to characterize total energy transfer reflected on the seat pan and the backrest. The mean responses suggest strong contributions due to back support, and direction and magnitude of vibration. In the absence of a back support, the seat pan responses dominated in lower frequency bands centered at 0.63 and 1.25 Hz under both directions of motion. Most significant interactions of the upper body against the back support was observed under fore-aft vibration. The addition of back support caused the seat pan response to converge to a single primary peak near a higher frequency of 4 Hz under x- axis, with only little effect on the y-axis responses. The back support serves as an additional source of vibration to the occupant and an important constraint to limit the fore-aft movement of the upper body and thus relatively higher energy transfer under. The mean responses were further explored to examine the Wd frequency-weighting used for assessing exposure to horizontal vibration. The results show that the current weighting is suited for assessing the vibration exposure of human subjects seated only without a back support.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.