Abstract
Advances in multimaterial 3D printing are enabling the construction of advantageous engineering structures that benefit from material synergies. Cellular structures, such as honeycombs, provide high-energy absorption to weight ratios that could benefit from multimaterial strategies to improve the safety and performance of engineered systems. In this study, we investigate the energy absorption for honeycombs with square and hexagonal unit cells constructed from acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU). Honeycombs were fabricated and tested for out-of-plane and in-plane compression using ABS, TPU, and a combination of ABS with a central TPU band of tunable height. Out-of-plane energy absorption for square honeycombs increased from 2.2 kN·mm for TPU samples to 11.5 kN·mm for ABS samples and energy absorption of hexagonal honeycombs increased from 2.9 to 15.1 kN·mm as proportions of TPU/ABS were altered. In-plane loading demonstrated a sequential collapse of unit cell rows in square honeycombs with energy absorption of 0.1 to 2.6 kN·mm and a gradual failure of hexagonal honeycombs with energy absorption of 0.6 to 2.0 kN·mm. These results demonstrate how multimaterial combinations affect honeycomb compressive response by highlighting their benefits for controlled energy absorption and deformation for tunable performance in diverse engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.