Abstract

There are huge potential applications of 3-D braided composite in aerospace engineering because of the non-delamination feature of the composite under impact loading. This paper presents the analysis of energy absorption features of 3-D braided composite under compression with different strain rates. The 3-D 4-step rectangular braided composite coupons were tested on a material tester MTS 810.23 and a split Hopkinson pressure bar (SHPB) apparatus to obtain out-of-plane and in-plane compression stress vs. strain curves at quasi-static and high strain rate state. The failure modes and energy absorption features of the 3-D braided composite under different strain rates were analyzed both in time domain and frequency domain. The energy absorbed by the 3-D braided composite increases with the strain rate. From fast Fourier transform (FFT) analysis of compression stress vs. time histories, the power of energy absorption of the 3-D braided composite increases with strain rate and mostly concentrate on the high frequency region. While for quasi-static compression, the power distributes in very narrow frequency region and also is less than that in high strain rates. This feature corresponds to the different damage and energy absorption mechanisms of the 3-D braided composite under quasi-static and high strain rate compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call