Abstract
The excellent mechanical properties of carbon nanotubes make them potential candidates for engineering application. In this paper, the impact and failure behaviors of single-walled carbon nanotubes (SWCNTs) are investigated. The effects of diameter, length, and chirality on their energy absorption characteristics under lateral impact and axial crush are studied. By integrating the principle of molecular structural mechanics (MSM) into finite element method (FEM), the locations and directions of fracture process can be predicted. It is shown that the specific energy absorption (SEA) of SWCNTs is 1–2 order of magnitude higher than that of the ordinary metallic materials and composites in axial impact, indicating that carbon nanotubes are promising energy absorption materials for engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.