Abstract

In this article, energy absorption and dynamic compressive stress–strain behavior of aluminum foam-filled and empty tube of aluminum alloy AA7075-T6 were investigated using a split Hopkinson pressure bar (SHPB) technique. Both quasi-static and dynamic compression tests were conducted on closed-cell aluminum foam specimens having a relative density of 0.16. The experimental results showed that the plateau stress and energy absorption of foam-filled aluminum alloy AA7075-T6 tube specimen increase with increase in strain rate. The load-deformation characteristics, failure modes, and energy absorption capacity of different structures under dynamic loading were investigated. At higher strain rates, the energy absorption capacity of foam-filled aluminum alloy tubes was found to be increased, which is useful for crashworthy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call